FuzzyCRegression.aicMethod
aic()

Calculates Aikike Inforation Criteria for fitted FCR model, used for selecting optimal number of groups

source
FuzzyCRegression.bicMethod
bic()

Calculates Bayesian Inforation Criteria for fitted FCR model, used for selecting optimal number of groups

source
FuzzyCRegression.confintMethod
confint()

Returns lower and upper confidence interval for fitted model, for specified significance level (default = 0.95)

source
FuzzyCRegression.distributionMethod
distribution()

Calculates distribution of weighted coefficients from fitted model

Arguments

  • results::FCRModel Model type from fcr output
  • index::Integer Column index of variable in X matrix to calculate coefficient distibution for (defaults to 1)
source
FuzzyCRegression.fitMethod
fit()

Fits the FCR model

Arguments

- `df`: name of dataframe (if missing, data must be passed as arrays)
- `y`: column name or array holding values of the dependent variable (required)
- `X`: a list of column names or a matrix holding values of the independent variable(s) with heterogeneous coefficients (required)
- `Z`: a list of column names or a matrix holding values of the independent variable(s) with homogeneous coefficients
- `G`: number of groups (required)
- `m`: regularization parameter (greater than 1), where group assignment becomes binary as m approaches 1 (default = 1.5)
- `unit`: column name or array with unit identifier (if panel structure)
- `time`: column name or array with time indicators (if panel structure)
- `startvals`: number of starting values for the minimization routine (default = 100)
- `cores`: number of parallel workers (default = 1)
source
FuzzyCRegression.predictMethod
predict()

Obtain predicted values of the dependent variable from the fitted model, using modal group membership

source